FM transmitter circuit projects are indeed quite popular among electronics hobbyists/students.
But the frustrating part is most transmitters refuses to work at all, and secondly the internet is full of crappy transmitter circuits.
Designing a stable FM transmitter circuit is rather a difficult job, many calculations are involved their. There are also some construction error and component value tolerance. Here you can find a reasonably stable and well tested transmitter that actually works.
Contents
Stable FM transmitter circuit diagram
First of all, have a look at the circuit diagram. It's basically a common base collpits oscillator, like the previous simple FM transmitter.
It's a bit complex than the previous one, but I think the complexity is fair for the sake of stability. Follow the article to know why this circuit is stable.
FM transmitter part list
Though I've mentioned the values of all parts in the diagram itself, but it's good to have a list.
- R1 - 100 Ohm, carbon film 1/4 watt
- R2 - 10 kOhm, carbon film 1/4 watt
- R3 - 22 kOhm, carbon film 1/4 watt
- C1 - 68 pF, ceramic disc
- C2 - 10 pF, ceramic disc
- C3 - 68 pF, ceramic disc
- C4 - 1 nF, ceramic disc
- C5 - 1 nF, ceramic disc
- C6 - 100 nF, ceramic disc
- C7 - 470 uF, 10V electrolytic
- C8 - 150 pF, ceramic disc
- C9 - 150 pF, ceramic disc
- L1 - 11.5 turn on 6 mm diameter, see text below
- L2 - 3 turn on 3x2 mm ferrite bead, see text below
- Q1 - BC548 transistor
- U1 - AMS1117-3.3 LDO regulator
So, it uses 16 components excluding the wires, connectors and circuit board.
As always, you can replace all the components with their nearest value counterparts.
The antenna is just a peace of 75 cm single stranded wire, technically a quarter wave whip antenna.
The coil L2 is specially important, it's winded on a ferrite bead. The bead MUST be a RF ferrite bead, else the circuit wont work. You can salvage them from old TV balun, TV tuner box, DVD RF box, radios and so on.
The coil L1 is winded over 6 mm diameter, 11.5 turns of single stranded hookup wire. It's basically a RF choke coil.
You can use any 3.3 volt LDO regulator instead of the AMS1117-3.3, but definitely not a Zener diode and resistor combo to get the regulated voltage.
Construction
You've to pay a little attention while constructing RF related circuits.
- Component leads should be trimmed to minimal.
- There should be no or lowest possible capacitance between two PCB tracks, anyway this can't be avoided.
- Use as tittle solder as possible.
- Clean the solder flux thoroughly after soldering, preferably with alcohol.
- All components should be soldered tightly.
- Finally, enclose it inside a little metal case if possible.
I had constructed the circuit on a strip board, which is not fit for this purpose.
Also messed up all the above rules, due to an extensive trial end error to find the right component values. But finally it worked, now the FM transmitter circuit is reasonably stable, without any frequency drifting.
Few pictures of my prototype.
You can see the little ferrite bead in the above picture.
So why this miniature FM transmitter circuit is reasonably stable ?
I did some research and calculations before making the final circuit and choosing the components.
I'm not going to extensive details, but these are main reasons why this transmitter is stable.
- A simple common base Collpits oscillator is a voltage controlled linear harmonic oscillator. In fact the frequency modulation is achieved by the varying voltage at the transistor's base, due to varying P-N junction capacitance. So for a stable operation I've to keep the supply voltage as stable as possible.
- All oscillators generate some order harmonics along with the fundamental frequency. So I've to choose such a transistor which can operate at the fundamental frequency of the LC tank circuit, but not at the 2nd harmonic. BC548 is a good candidate for this purpose, which has a transition frequency of around 100 MHz, but also a larger noise figure.
- Ferrite cores tends to absorb higher frequencies much more than lower frequencies. Thus by using a ferrite core inductor at the LC tank circuit, it it minimises the 2nd order and 3rd order harmonics further.
- Ferrite core inductors also tends to have higher Q factor than air core inductors, so the coil also improves the transmitter's quality.
Range test and future improvement plans
Undoubtedly it's a very low power FM transmitter circuit, it's intended for stability, not range.
In my tests it's transmitting not more than 20 meters, but the audio quality is good enough, and no frequency drifts observed.
But increasing the range is rather simple than increasing stability, it just needs a buffer stage and RF amplifier.
It's also transmitting AM waves, as the modulating signal is directly fed into the base of the transistor, though the AM modulation index is quite low. I'm planning to use a varactor diode for FM modulation in the future design.
SMM says
I'm willing to do long range fm transmitter around 2miles. Is it enough if i'll use the stages-oscilator stage, pre-amplifier stage, power amplifier stage? Can you show me the design circuit of long range fm transmitter, please?
Arnab says
There are many craps available on the internet, just search for it.
But the main problem is making the oscillator stage stable.
I'll publish a circuit, capable of up to 5 Km, but that's going to take some time.
You should go through it > http://www.electronics-tutorials.com/oscillators/oscillator-drift.htm
Lowell says
Hie
I've been trying to make a laser driver but I don't have the material, I depend on old DVD junk.
I'm just a kid and can't buy them, they are not sold where I live .
Any suggestions for an easy improvision
Arnab says
You need a constant current source to safely drive laser diodes.
Best if you can buy a LM317 regulator and make something like this, https://www.circuitsdiy.com/lm317-constant-current-source/ .
Alternatively try to find a 7805 voltage regulator and a from your junk and a 22Ohm to 33Ohm resistor, then comment here again.
Youcef says
the hard is making stable Transmitter without disturbing harmonics